III Knots in Contact Manifolds

recall a knot K (we embedding of 5') in a contact manifold (M,3) is <u>Legendrian</u> if $T_xK \in 3_x$ for all $x \in K$ let v(K) = normal bundle of K(identify with tubular neighbor hood) v(K) is an \mathbb{R}^2 -bundle $\mathbb{R}^2 \to v(K)$ \downarrow K

50 V(K) = 5' × R^L upto isotopy there are Z-worth of ways to identify V(K) with 5' × R² that differ by "twisting

so if
$$f! S' \times D^2 \rightarrow \mathcal{V}(K)$$
 and trivialization
then $\mathcal{V}_n^{-1} \circ f$ gives \mathbb{Z} -worth
Prerise: Show these are only trivializations
up to isotopy
an identification of $\mathcal{V}(K)$ with $S' \times \mathbb{R}^2$ is called a
framing of K
a nonzero section s of $\mathcal{V}(K)$ gives a framing of K
can see this by picking another section \tilde{s} of $\mathcal{V}(K)$ that
is transverse to s
so $s(X), \tilde{s}(X)$ is a basis for $\mathcal{V}_X(K)$
then $\mathcal{V}: K \times \mathbb{R}^2 \rightarrow \mathcal{V}(K)$
 $(\pi(a,b)) \mapsto a s(x) + b \tilde{s}(X)$
is a trivialization
 $f K$ is a Legendrian knot we get a framing:
let $\pi \in K$, set $s(X) \neq 0$

1

this is called the contact framing of K and denoted $\mathcal{J}(K,3)$

<u>exercise</u>: if X_d is a Reeb vector field for { then this also frames K, show this giver

same framing as above

if K is null-homologous then there is an embedded surface ICM such that dI=K <u>exencise</u>: prove this Z is colled a <u>seifert</u> surface for k (easy to construct Σ in \mathbb{R}^3 , 5^3) given Z we get a framing for K: REK, let SCH = O in Tx I NX K this is called the Seifert framing of K exercise: this framing is well-defined given two framings F, and Fr of K we can associate an integer $5' \times \mathbb{R}^2 \xrightarrow{\mathcal{F}} \mathcal{V}(\mathcal{K}) \xleftarrow{\mathcal{F}} 5' \times \mathbb{R}^2$ So $\mathcal{F}_2 \circ \mathcal{F}_i : S' \times \mathbb{R}^2 \to S' \times \mathbb{R}^2$ is isotopic to the some a (the defined above) so we say "7-72 = "

the Thurston - Bennequin invariant of K is

<u>Exercise</u>: if K, isotopic to K_2 through Legendrian knots, then $tb(K_1) = tb(K_2)$

now suppose K is an oriented Legendrian knot and K=ZE

<u>exercise</u>: prove an oriented 2-plane bundle over a surface with boundary is trivial so $3l_{z} = \Sigma \times R^{2}$ and $3l_{k}$ inherits a trivialization $3l_{k} \cong K \times R^{2}$

Comming from ZXR²

<u>exercise</u>: the trivialization $3l_Z$ is <u>not</u> unique but when restricted to $\partial \Sigma$ it is unique

since K is oriented we can choose a vector v(x) at x < K that points in direction of orientation

> so v gives a section K×R² J J v K

think of $\tau: K \to \mathbb{R}^2$

this map is non-zero so it has a

unding number about origin
let
$$r(K) = winding number of r about origin$$

this is called the rotation number of K
overcuse: if K, isotopic to K₂ through oriented
Legendrian knots,
then $r(K_1) = r(K_2)$
the "classical invariants" of an oriented Legendrian
knot are
i) knot type
i) Thurston-Bennequin invariant
i) rotation number
let's see how to compute these invariants in $(\mathbb{R}^3, \mathbb{I}_{std})$
recall $\mathbb{I}_{std} = \ker(d\mathbb{Z} - \mathbb{Y}d\mathbb{X})$
the front projection is
 $\pi: \mathbb{R}^3 \to \mathbb{R}^2: (X_1Y, \mathbb{Z}) \mapsto (X, \mathbb{Z})$
if K is a Legendrian knot in \mathbb{R}^3 we can parameterized
 i^{k} $\Psi: S^{1} \to \mathbb{R}^3: O \mapsto (XO), \Psi(O), \mathbb{Z}(O)$
K Legendrian \Leftrightarrow $\Psi^{*}X = O$ \Leftrightarrow $\mathbb{Z}' - \mathbb{Y}X' = O$
 $\mathbb{Z}'dO - \mathbb{Y}X'dO$

so an immersed curve with no vertical tangencies in R² ~ xz-plane determines a Legendrian knot by setting Y = dz \sim 1 S

errencise: picture these knots (e.g. draw xy-projection)

note: knot diagrams usually have crossing information eg. or X

but this comes for free here since y= dz so y-coordinate is bigger if slope bigger recall for a right handed coordinate system У we need so for a Legendrian knot aways see never X

any arc A in (M,?) can be Co-isotoped, rel end points to a Legendrian arc (and rel only points where A already Legendrian)

Proof: Start in (R3, 3, std) xz-plane it we took "Legendrian Life" (set y = az) we would get a legend rin but with y=-1 so not C-close one rel end points but replace T(A) with are with zig-zags so all shopes in (-E, C) hew arc A' Legendrian lift of A' C'- close to A! exercise: prove for any A C(R? 3 std) now given A C (M,?) cover A by Darboux balls break A into pieces A, ... An

so that each A; C Darboux ball approximate A_i in $U_i \cong (\mathbb{R}^3, \mathbb{I}_{s+n})$ by above then Az (rel A,) ...

(to deal with smoothness make A; over lap)

Corollary Z: every knot in (M,3) can be Co-approximated by a Legendrian knot

lets compute tb(K) and r(K) in front projection

Fact:

it Fa framing on a knot K and K= 22 then F-Seifert framing = link (K,K') where K' is a copy of K pushed in the direction of a vector field along K defining F tor oriented links K, K' one assigns a to each crossing of K and K' Sign E ć X link (K,K')= = = E(c) all crossing between K,K'

So for tb(K) if K Legendrian let K'= K pushed in Reeb direction

50 tb(K) = linh(K,K')

七(K)= = 1(6-4)=1

given a knot diagram D for K we say the writhe of D is: orient D Writhe(D) = I E(c) Crossings c

exercise: if K is Legendrian in (R, 3, 5+d) then

Show

tG(K) = writhe(T(K)) - # left cusps

hint: consider last example

Now for rotation number
we can trivialize
$$i_{stat} = ker(dz - ydx)$$

 $= span \{\frac{2}{2}y, \frac{2}{3}x + y\frac{2}{3}x\}$
by $\frac{2}{3}y, \frac{2}{3}x + z\frac{2}{3}y$
to count a winding number in \mathbb{R}^2 one hixes
a line and counts how many times
 $(+ counterclack wise, - clock wise)$
you pass this direction, then divide by 2
eg.
 $gg.$
note we do not need a settert surface to compute
 $r(K)$ in \mathbb{R}^3 surce can globally trivialize $\overline{3}$.
to compute $r(K)$, choose $\frac{2}{3}y$ in \overline{i}_{stat} and
count how many times oriented tangent
vector crosses this
 $at paints like$

tangent vecto has x-component so cloes not pass y-clineation

50 WE SEE $\Gamma(K) = \frac{1}{2} (\# down \ cusps - \# up \ cusps)$

50 K, not Legendrian isotopic to K2 or K3 are Kz and Kz isotopic? Major Line of Research fix (M, 3) and smooth oriented knot KCM let L(K) = { Legendrian isotopy classes of Legendrian knots in (M,)) smoothly isotopic to KS consider map $F: \mathcal{I}(k) \to \mathbb{Z}^2$ $L \longmapsto (r(L), H_0(L))$ Determine image I called the geograpy problem · for each (i,t) e image P what is $\underline{F}(r,t)$ called the botany problem note: · Cor 2 says Z(K) = p Colled St T · given positive/ negative stabilization s s clearly $H_{2}(S_{\pm}(K)) = H_{2}(K) - 1$ r (S_±(K))= r(K)± 1 50 L(K) has isfinitely many elts!

let v be a non-zero section of ? | E push K along v to get a copie K'of K

note: we only defined link in R³, in general link (K, K')= L. I algebraic intersection number

consider
$$\mathbb{R}^{3}$$
 with contact structure
 $3_{stal} = ker(dz-ydx)$
 $L' = \{(x, 0, 0)\} \in \mathbb{R}^{3}/_{X \mapsto 3 \times H}$
is a legendrian knot
given any legendrian knot L in (4,3)
 Th^{10} I.4 says L has a neighborhood N
that is contactomorphic to a neigh-
 $N' of L'$
note: in N' we see $\Sigma = \{(x, y, 0)\}$ $|y| \le 3$
 $\sum_{l=1}^{L} L_{l}$
 $L' is a transverse knot$

its image L+ in N is called the transverse push off of L

lemma 3:

any knot in (M,?) can be C°-isotoped to be a transverse knot

Proof: Corollary 2 + transverse push off

Exercise: for a Legendrian knot K Show Show $sl(K_{\star}) = tb(K) - r(K)$