III Knots in Contact Manifolds
recall a knot K (re embedding of S^{\prime}) in a contact manifold $\left(M_{1}\right)$ is Legendrian if
$\left.T_{x} K \subset\right\}_{x}$ for all $x \in K$
let $\nu(K)=$ normal bundle of K
(identify with tubular neighbor hood)
$\nu(k)$ is an \mathbb{R}^{2}-bundle

$$
\begin{gathered}
\mathbb{R}^{2} \rightarrow \nu(K) \\
\downarrow \\
K
\end{gathered}
$$

exercise: since M is oriented so is $\nu(k)$ and therefore trivial.
so $\nu(k) \cong S^{\prime} \times \mathbb{R}^{2}$
unto isotopy there are \mathbb{Z}-worth of ways to identify $v(k)$ with $S^{\prime} \times \mathbb{R}^{2}$ that differ by "twisting

$$
\begin{aligned}
& \psi_{n}: S^{1} \times D^{2} \\
& \rightarrow S^{1} \times D^{2} \\
&\left(\phi_{1}(n, \theta)\right) \mapsto(\phi,(r, \theta+n \phi))
\end{aligned}
$$

so if $f: S^{\prime} \times D^{2} \rightarrow \nu(K)$ one triválization then ψ_{n}^{-1} of gives Z-worth
exercise: Show these are only triucalitations up to isotopy
an identification of $\nu(k)$ with $S^{\prime} \times \mathbb{R}^{2}$ is called a framing of K
a nonzero section s of $\nu(K)$ gives a framing of K can see this by picking another section \tilde{s} of $\nu(k)$ that is transverse to s
So $s(x), \tilde{s}(x)$ is a basis for $\nu_{x}(k)$
then

$$
\begin{aligned}
\psi: K \times \mathbb{R}^{2} & \rightarrow \nu(K) \\
(x,(a, b)) & \mapsto a s(x)+b \tilde{s}(x)
\end{aligned}
$$

is a trivialization
If K is a Legendrian knot we get a framing:
let $x \in K$, set $s(x) \in \eta_{x} \cap \nu(k)$
sf. $S(x) \neq 0$

this is culled the contact framing of K and denoted

$$
J(K, 3)
$$

exercise: if X_{α} is a Reeb vector field for ξ then this also frames K, show this giver
same framing as above
if K is null-homologous then there is an embedded surface $\Sigma \subset M$ such that $2 \Sigma=K$
exercise: prove this
Σ is called a seifert surface for K (easy to construct Σ in \mathbb{R}^{3}, s^{3})
given \sum we get a framing for K :
$x \in K$, let $s(x) \neq 0$ in $T_{x} \sum \cap \nu_{x} K$

this is called the Seifert framing of K
exercise: this framing is well-defined given turo framings 7_{1} and \mathcal{F}_{2} of K we can associate an integer

$$
S^{\prime} \times \mathbb{R}^{2} \xrightarrow{F_{1}} \nu(k) \stackrel{f_{2}}{\leftrightarrows} s^{\prime} \times \mathbb{R}^{2}
$$

so $\mathcal{F}_{2}^{-1} \circ \mathcal{F}_{1}: s^{1} \times \mathbb{R}^{2} \rightarrow s^{1} \times \mathbb{R}^{2}$
us scotopic to ψ_{n} some $1\left(\psi_{1}\right.$ deficied above)
so we say " $7_{1}-7_{2}=n$ "
the Thurston-Bennequin invariant of K is

$$
t b(K)=F(K, \zeta)-\text { Seifert framing }
$$

contact framing
exencuse: if K_{1} isotopic to K_{2} through Legendrian knots, then $t b\left(K_{1}\right)=t b\left(K_{2}\right)$
now suppose K is an oriented Legendrian knot and $K=\partial \Sigma$
exercise: prove an oriented 2 -plane bundle over a surface with boundary is trivial
So $\left.3\right|_{\Sigma}=\Sigma \times \mathbb{R}^{2}$
and $3 I_{k}$ inherits a trivialization

$$
\}\left.\right|_{K} \cong K \times \mathbb{R}^{2}
$$

comping from $\sum \times \mathbb{R}^{2}$
exercise: the trivialization $3 I_{\Sigma}$ is not unique but when restricted to $\partial \Sigma I^{F}$ is unique
since K is oriented we can choose a rector $v(x)$ at $x \in K$ that points in direction of orientation so v gives a section

$$
\left.\begin{array}{c}
K \times \mathbb{R}^{2} \\
\underset{k}{\downarrow}
\end{array}\right) v
$$

think of $v: K \rightarrow \mathbb{R}^{2}$
this map is non-zero so if has a
winding number about origin
let $r(k)=$ winding number of v about origin this is called the rotation number of K
exencuse: if K_{1} isotopic to K_{2} through oriented Legendrian knots,

$$
\text { then } r\left(K_{1}\right)=r\left(K_{2}\right)
$$

the "classical invariants" of an oriented Legendrcain knot are

1) knot type
2) Thurston-Bennequin invariant
3) rotation number
let's see how to compute these invariants in $\left(\mathbb{R}^{3}, 3_{s t d}\right)$
recall $\xi_{s+d}=\operatorname{ker}(d z-y d x)$
the front projection is

$$
\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}:(x, y, z) \mapsto(x, z)
$$

if K is a Legendrian knot in \mathbb{R}^{3} we can parameterize it

$$
\psi: S^{\prime} \rightarrow \mathbb{R}^{3}: \theta \longmapsto(x(\theta), y(\theta), z(\theta))
$$

K legendrián $\Leftrightarrow \psi_{" 1}^{*} \alpha=0 \Leftrightarrow z^{\prime}-y x^{\prime}=0$

$$
z^{\prime} d \theta-y x^{\prime} d \theta
$$

consider $\pi \circ \psi: S^{\prime} \rightarrow \mathbb{R}^{2}$
where z-coordinate is a function of x-coordinate

$$
\frac{\frac{d z}{d \theta}}{\frac{d x}{d \theta}}=\frac{d z}{d x} \quad \text { so }
$$

for Legendricos $K \quad y(\theta)=\frac{d z}{d x}(\theta)$
you can recover the y-wordinate from the slope in the $x z$-plane
note: if $x^{\prime}\left(\theta_{0}\right)=0$, then $z^{\prime}\left(\theta_{0}\right)=y\left(\theta_{0}\right) x^{\prime}\left(\theta_{0}\right)=0$
so z^{\prime} always vanishes to at least the order of x^{\prime}
so $\lim _{\theta \rightarrow \theta_{0}} \frac{z^{\prime}(\theta)}{x^{\prime}(\theta)}$ will exist
(ie. always have a y-wordriate)
note: this implies no vertical tangents get around this with cusps

generically: $\theta \mapsto\left(\theta, \frac{3}{2} \theta^{1 / 2}, \theta^{3 / 2}\right)$
"semi- cubical cusp"
K is still smooth even though $\pi(k)$ not
so an immersed curve with no vertical tangencies in \mathbb{R}^{2} determines a Legendrian knot by setting $y=\frac{d z}{d x}$

exercise: picture these knots
(egg. draw xy-projection)
note: Knot diagrams usually have crossing information eg.

but this comes for free here since $y=\frac{d z}{d x}$ so y-coordinate is bigger if slope bigger recall for a right handed coordinate system we need

so for a Legendrias knot aways see

never

lemma 1:
any arc A in $(M, 3)$ can be C^{0}-isotoped, rel $e n d$ points to a legendrion arc (and rel any points where A already Legendrion)

Proof: start in $\left(\mathbb{R}^{3}, \boldsymbol{l}_{s+d}\right)$
eg.

If we took "Legendrias Lift" (set $y=\frac{d z}{d x}$) we would get a legendrion but with $y=-1$

so not c°-close ore rel end points
but replace $\pi(A)$ with are with $3 t y$-tags so all slopes in $(-\varepsilon, c)$

Legendrion lift of $A^{\prime} C-$ close to A !
exercise: prove for any $A \subset\left(\mathbb{R}^{3}, ?_{s+d}\right)$
now given A $\subset(M, 3)$ coven A by Darboux balls

break A into pieces $A_{1} \ldots A_{n}$
so that each $A ; C$ Darboux ball approximate A_{1} in $U_{1} \cong\left(\mathbb{R}^{3} ?_{\text {std }}\right)$ by above then $A_{2}\left(\operatorname{rel} A_{1}\right) \cdots$ (to deal with smoothness make A_{i} oven lap)

Corollary 2:
every knot in (M, i) can be C0 -approximated by a Leqendrion knot
lets compute $t b(K)$ and $r(K)$ in front projection
Fact:
if F a framing on a knot K and $K=2 \Sigma$
then 7 -Seifert framing $=\operatorname{lin} k\left(K, K^{\prime}\right)$
where K^{\prime} is a copy of K pushed is the direction of a vector field along K defining 7
for oriented links K, K^{\prime} one assigns a $\operatorname{sign} \varepsilon$ to each crossing of K and K^{\prime}

$\operatorname{link}\left(K, K^{\prime}\right)=\frac{1}{2} \sum_{\text {all crossing }} \varepsilon(c)$ between K, K^{\prime}
example: K

so $\operatorname{link}\left(K_{1} K^{\prime}\right)=\frac{i}{2}(6)=3$
So for $t b(k)$ if K Legendrim let $K^{\prime}=K$ pushed in Reed direction
So $t b(k)=\operatorname{linh}\left(k, k^{\prime}\right)$
example:

$$
t b(k)=\frac{1}{2}(6-4)=1
$$

given a knot diagram D for K we say the writhe of D is: orient D

$$
\text { writhe }(D)=\sum_{\text {crossings } c} \varepsilon(c)
$$

exencisé: if K is Legendriun in $\left.\left(\mathbb{R}^{3},\right\}_{\text {std }}\right)$ then show

$$
t_{b}(k)=\text { writhe }(\pi(k))-\# \text { left cusps }
$$

bini: consider last example
now for rotation number
we can trivialize $\}_{s t d}=\operatorname{ker}(d z-y d x)$

$$
=\operatorname{span}\left\{\frac{\partial}{\partial y}, \frac{\partial}{\partial x}+y \frac{\partial}{\partial z}\right\}
$$

by $\frac{\partial}{\partial y}, \frac{\partial}{\partial x}+z \frac{\partial}{\partial y}$
to count a winding number in \mathbb{R}^{2} one fixes a line and counts how many tires (+ counterdockwise, - clockwise) you pass this direction, then divide by 2 eg.
 whining +2
note we do not need a Seifert surface to compute $r(k) \operatorname{in}^{-} \pi^{3}$ side can globally trivialize?
to compute $r(K)$, choose $\frac{\partial}{\partial y} \mathrm{mi}^{-} ?_{s t d}$ and count how many times oriented tangent vector crosses this at points like
tangent recto has x-component so does not pass y-direction
can assume all cusps are horizontal $(\langle$ not $T)$ at a cusp we see

$\int \ln x y$-plane

so tangen vecto

$$
\psi_{-}^{4}
$$

so we see

$$
r(k)=\frac{1}{2}(\# \text { down cusps - \#up cusps) }
$$

examples:

$$
\begin{gathered}
t h=-1 \\
r=0 \\
k_{3}
\end{gathered} \rightarrow \substack{t \\
r=1 \\
r=-2}
$$

$$
\begin{aligned}
& t b=-2 \\
& r=1
\end{aligned}
$$

so K_{1} not Legendrià isotopic to K_{2} or K_{3} are K_{2} and K_{3} wotopic?

Major Line of Research
fix $(M, 3)$ and smooth oriented knot $K \subset M$
let $\mathcal{L}(K)=\{$ Legendrian soto by classes of Legendrim knots in $(M, 3)$ smoothly isotopic to K\} ~
consider mg o $\Psi: \mathscr{L}(k) \rightarrow \mathbb{Z}^{2}$

$$
L \longmapsto(r(L),+b(L))
$$

Determine, image Ψ called the geograpy problem

- for each $\left(\sigma_{1} t\right) \in$ intage Ψ What is $\Psi^{-1}(r, t)$ called the botany problem
note: $\cdot \operatorname{Cor} 2$ says $\mathcal{L}(K) \neq \varnothing$
- given

clearly

$$
\begin{aligned}
& t b\left(S_{ \pm}(k)\right)=t b(k)-1 \\
& r\left(S_{ \pm}(k)\right)=r(k) \pm 1
\end{aligned}
$$

so $\mathcal{L}(k)$ has intirictely many alts!
called positive negative stabilization
example: for the unknot U in $\left(\mathbb{R}^{3}, ?_{s+d}\right)$ we will see $\operatorname{lm} \mathbb{F}$ is

for other knots might see

so in Ψ called the mountain range of K
We now turn to transverse knots.
recall a k not k in $\left(M_{1} 3\right)$ is transverse if $T_{x} k \pi ?_{x}$ for all $x \in K$
note: we are taking 3 to be oriented if K is positively transverse to 3 we say it is a positwe transeverse knot
similarly for negative transverse knots
we will only consider positive transuers knots so that is what transverse will mean
assume K is null-homologous, so $K=\partial \sum$ some surface Σ is M
as above $\left.Z\right|_{\Sigma}=\Sigma \times \mathbb{R}^{2}$
let v be a non-zero section of $3 l_{\Sigma}$ push K along v to get a copies K^{\prime} of K
define the self-linking of K to be

$$
s l(K)=\operatorname{lin} k\left(K, K^{\prime}\right)
$$

note: we only defined link in \mathbb{R}^{3}, in general

$$
\operatorname{lin} k\left(K, K^{\prime}\right)=L \cdot \Sigma
$$

algebraic intersection number
consider $\mathbb{R}^{3} / x \longmapsto x+1$ with contact structure

$$
\begin{aligned}
& \left.x^{\prime} \longmapsto x+1 \quad\right\}_{s+d}=\operatorname{ker}(d z-y d x) \\
& L^{\prime}=\{(x, 0,0)\} \in \mathbb{R}^{3} /_{x \mapsto x+1}
\end{aligned}
$$

is a legendrian knot
given any Legendriai knot L in $(M, 3)$ Th ${ }^{\text {II III. } 4}$ says L has a neighborhood N that is contactomorphic to a neigh. $N^{\text {of }}$ of L^{\prime}
note: in N^{\prime} we see $\Sigma=\{(x, y, 0)| | y \mid<\varepsilon\}$

L_{+}^{\prime} is a transverse knot its iniage L_{+}in N is called the transverse push off of L
lemma 3:
any knot in $(M, 3)$ can be C^{0} - isotoped be a transurse knot

Proof: Corollary 2 + transverse push off
exercise: for a Legendrian knot K
Show

$$
s l\left(K_{t}\right)=t b(k)-r(k)
$$

